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‘By Lipman Bers
SUMMARY

The method of compubting velocity and pressure distributions along
wing profiles under. the assumption of the simplified density-speed
relation, outlined in NACA Techhical Note 1006, is extended to the case
of a nonsymmetrical profile and a flow with circulation. The shape of
the proflile, the speed of the undisturbed flow, and a parameter deter—
mining the angle of attack may be prescribed. The problem is reduced
to a nonlinear integral equation which can be solved numerically by an
iteration method. A numerical example is given.

INTRODUCTION

This paper treats the flow of a compressible fluid past a wing
section wnder the assumption of Chaplygint's simplified density—speed
relation (references 1, 2, and 3). The method is sufficiently well
known to preclude the necessity of a detailed discussion. It will
suffice to recall that it consists of replacing the "exact" density—
speed relation in a potential flow

1

o\71
7y=-1q ;

an

(wvhere p 1is the density, . q +the speed, a the speed of sound,
y ‘the ratio of specific heats, and the subscript zero refers to the
stagnation values) by the "approximate" relation
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p=po<l+§§-2> ' (2)

which can be obtained from equation (1) by setting ¥y = —1. Under the
assumption of relation (2), the continuity equation for the potential
of a steady two—dimensional flow

262)-562)-

becomes the classical equation of a minimal surface.

For flows past airfoils obeying the simplified density—speed
relation, the "inverse problem’ (construction of a flow past a profile
without predetermining the shape of the profile) was solved by Tsien
(reference 4) for flows without circulation. A formula generating
circulatory flows was given by the author (reference 5) and, in a more
elegant and general form, by Gelbart (reference 6). The latter result
was also obtained independently by Lin (reference 7). In & recent
report (reference 8) the "direct problem” (construction of a flow past
a given profile) was solved for the case of a circulation—free flow and
a symmetrical profile. The solution for the general case is given in
this report. It will be seen that the corresponding boundary—value
Problem is equivalent to a mapping problem, similar to the conformal
mapping problem occurring in the theory of incompressible fluid. This
mapping problem may be reduced to an integral equation somewhat similar
to ‘the well-known equation of Theodorsen and Garrick but not identical
with it even in the case of infinitely slow (and therefore incompress—
ible) flows. The integral equation can be solved numerically by an
iteration method which seems to converge, though a rigorous convergence

proof is still lacking.

The procedure for computing velocity distribution is described in
the main part of the paper; the mathematical derivation and Justifi-—
cation will be found in the appendix.

The method described in this report could be extended to the case
of gases obeying the actual equation of state (or, for that matter,
any prescribed pressure—density relation) as was done for the case of
symmetrical flows (reference 9). The computational labor involved in
treating this case would be so extensive that a detailed description
does not seem to be called for at present.
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The author wants to draw attention to a paper by A. Gelbart and
D. Resch (reference 10) in which a different method of obtaining
veloclity distributions along preassigned profiles is used. While
Gelbart's method does not aim at obtaining exact valued, it does
achieve good approximations and involves very little computational
labor.

_ This investigation was conducted at Syracuse University under the
sponsorship and with the financial assistance of the National Advisory
Committee for Aeronautics.

The author is greatly indebted to Miss Elizabeth H. Wetherell for
competent assistance.

SYMBOIS
Aw) auxiliary function defined by equation (A23)
a . local speed of sound
a.o . speed of sound at ‘stagnation point
B(w) auxiliary function defined by equation (A23)
c positive constant
ds line element in z—plane , line elém.ent of profile P
ds ) line element on minimal surface @(x,y) whose
proJection is d@s
E(P) domain exterior to profile P
£(w) function equal to f£*(w — ayp)
£, (o) nth approximation to function Z£(w)
P (w) function defining mapping of circle into profile P
g4 function defined in section 3 under ANALYSTS
81k | coefficients of metric dse
G complex potential of a compressible flow

h(w) function defined by equation (10)




¥

z =Xx+ 1y

Z(o)

line through zp directed toward E(P)
angle at zp

function defined by equation (A35)
stream Mach number

profile In z—plane

speed

speed. of undisturbed flow

value of q at a boundary polint
distorted speed

value of g* at a boundary point
maximm of Y*

distorted 'speed of flow at Infinity
radius of circle in {-—plane

real part of following term

arc length measured along P
total length of curve P
components of veloclty

complex velocity

distorted complex velocity
Cartesian coordinates in z-plane
complex variable

complex variable on leadiné edge

complex varigble on trailing edge

NACA TN 2056

and bisecting

coordinate of profile as a function of parameter o
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=¢ + 1in

O v 3R

D2

e(o)

Aw)

angle of attack

angle at trailing edge
exponent in adiabatic relation
circulation of flow |
auxiliary complex variabile

slope of velocity vector

.value of 8 on boundary

function determining shape of curve P

square of d:\ls*borted speed of undisturbed flow
function defined by equations (9)

Cartesian coordinates in ¢-plane

density

stagnation density

dimensionless length parameter along profilé P
parameter value coiTesponding to point z; on P
prescribed value of f(a)l)

velocity potential

value of ¢ at boundary

auxiliary analytic function defined I;y equation (A22)
stream function

argument of a point on circle |¢| =R

parameter determining angle of attack and circulation

nth approximation to parameter @y

value of ® for which ZP(w) = oy
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ANALYSIS

1. The Boundary—Value Problem and the Mapping Problem

Given a profile P (see fig. 1) in the plane of the complex vari-
able z = x + iy. The profile P 1s assumed to be a smooth curve

except perhaps for a sharp corner at the trailing edge zp. Let 1 be
a directed straight line passing through the point zp, pointing toward

the domain exterior to P and bisecting the angle at zp. (If P has
a cusp at zp, 1 shall be tangent to P at this point.) The posi—

tion of P can be specified by prescribing the angle « by which 1
must be turned in order to mske it coincide with the positive x—axis.
This angle will be called the angle of attack and it will be assumed

that |a| <5

Let s denote the arc length on P measured in the counter—
clockwise direction from the point zp. It will be convenlient to use

the dimensionless parameter

o = 2ns /S

vhere S i1s the total length of the curve P. The shape.of P 1is
determined by the function 6(c),0 < ¢ < 2x, which denotes the angle
between 1 and the tangent to P at a point corresponding to the
parameter value o, the tangent pointing in the direction of
increasing o (cf. £ig. 1). Note that

o(0) =7 — 5

(3)
8(2x) = 2x + g

B being the angle at the trailing edge.

It is required to find a steady compressible potential flow around
the profile P which is parallel to the x—axis far away from the )
profile and has there a prescribed speed 4. The flow should obey the
simplified density-speed relation (2) and satisfy the Kutta—Joukowskl
condition (i.e., the trailing edge should be a stagnation point, or at
least, if P has a cusp at zp, & point where the streamline divides

jtself into two branches). It is assumed that the values of «




NACA TN 2056 : 7

end q, are such that there exists one more stagnation point, at some
point z; of P corresponding to the parameter value o,

It will be shown in the appendix that this problem is equivalent
to the determination of a mapping of the domain E(P) exterior to the
profile P onto the domain [{| >R in the plane of the auxiliary
complex variable §, in such a way that the potential and stream func—
tilon of the flow become conjugate harmonic functions in the { —plane.
The mapping should take z = « into { = «» and should preserve the
length and direction of a horizontal line element at infinity.

By this mapping the profile P goes over into the circle |{| =R,
the points z = zp and 2z = z; being taken into § = Re 10

and ¢ = ~Re %0 » respectively (see fig. 2). The point—to—point corre—
spondence between P and the circle is described by an increasing
functlion

c=f*(w),—m0§w52ar-—a)o (4)

such that z = Z(o) corresponds to ¢ = Rer®. In particular

£*(-g) = 0

f*(ﬁ + (Do) = UL

f*(2n - cuo) = 2;:J

It will be more convenient to use the function

v~

(5)

£(®) = £%(o — ap) e
satlsfying the relations |
‘ £(0) = 0 ]
Cf(x v 2mg) =g ¢ (1)
£(2x) = 2x _

It will be seen that the functions f(w) can be computed by
solving a nonlinear integral equation.
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2, Computations of the Velocity Distribution, the
Angle of Attack, and the Circulation

Tt turns out that the function f(w) determines completely the
mapping from the {—plane into the z-plane, as well as the velocity
distribution of the flow. The boundary values of quantities character—
izing the flow will be denoted by tildes and considered as functions of
the parameter o. Thus a(c) denotes the value of the potential at the
point corresponding to the parameter value o.

The speed of the flow at infinity will be characterized by means of
the parameter )

2 .
A = q°°2 = — (8)
Y 1+y/1+ Lo
a02
Set -
A(w) =®[f(a))] _Brx w, 0 Xw < 2%
' > (9)
A{w) =A(w + 2x)
J
and
:r
n _ 1 r " %
(w) = o LA((D + 1) —Alw — ’c.)_l cot 7 dt (10)

A

0

The speed of the flow at the profile is given by the formula

~ oq*| £
aff(@)] = 8 Cul (w)]q ' (11)
1 -3¢ [e(w)]?
where
1+£ 22 o
We@)] =yx 2 [sin g|" joos =52 (@) (12)
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The angle of attack a is determined by

2xn

1 .
a,=a)o—§2£+§; e[ f(w)] aw (13)
O .

Finally, the circulation of the flow equals

B

2+E .
- 2 "mfy 8 sin W
I'=—ay ) : (14)
2x _B 4 - 2B 2B :
T +— ™ O— 2
,sin 520-1 e_h(w')—)@ T lsin gl cos® —?—Q eh(m) dw
(0]

- It will be seen that the function f(w) can be compited. Thus
1t is possible to determine a flow for a given function ©(g), that is R
for a profile of given shape and for a given value of the parameter A,
that is, for a given speed of the undisturbed flow. The parameter Wy

determines the angle of attack and the circulation. TIn particular, the
value ®y = 0 leads to a circulation—free flow.

3. The Integral Equation

The function f(w) satisfies the relation

® B . 2B 2p
1l—— 24— '
wt T _hewt T w! [T ! — 2w
sin ’é— e h(ﬂ) )—XE sin ? COS2 ————O- eh(w') dw?
O .
£(w) = 2n ‘ (15)
t ;| _ T2+ == 1] x ot — 2 t
sin 2= e h(m')_)@ T lsin —| cos? > o (@) dm?
0

where h(w) is given by equations (9) and (10). Since the right-hand
side depends on f, equation (15) is a nonlinear integral equation.

For = 0 the integral equation reduces to the one derived
previously (reference 8) under the special assumption that the profile
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is symmetrical with respect to the x—axis. The special case A =0
corresponds to an infinitely slow flow. For X = 0 the integral
equation becomes

®
1—=
4
sin & (@) g
0 2
f(w) = 2=x
2x 1-B
b 1 QR
sin @ TR goy
2
0

It is seen that f(w) -does not depend on w@y. This had to be

expected; for in this case the function £(w) describes the corre—
spondence between P and [Cl = R resulting from a conformal mapping
of E(P) omto |¢| >R. In fact, an infinitely slow compressible flow
is equivalent to an incompressible flow.

The right—hand side of equation (15) will be denoted
by Flo, £(o*), A, “’O]' The integral equation may be written in the’

symbolic form
£ = (£, A, ) (16)

Tn this equation A and ®p are fixed parameters. Instead of deter—

mining the speed of the flow by the value of . A (i.e., by the value

of gq,) it may be desirable to prescribe the value of the maximum local
speed Qpaye Ib is known (and follows from the formulas given by the
appendix) that the speed attains its maximum at the boundary. According
1o equation (11), prescribing the maximum local speed is tantamount to
prescribing the maximum of the function Y* defined by equation (12).
Iet this maximm be denoted by T¥_,,- It follows from equation (12)
that

.| B -1
ax ' ] o~ 20
T =~y 10 21" foos ——2 (@) (17)
1+= :
2 T L
0<w< 2rn

or

A= 81(:{;:. E*m:’wo) (18)
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where g, denotes the square of the right-hand side of equation (17).

If g* is the prescribed value and’ A +the unknown quantity, then
equation (17) must be replaced by the system )

£ =F(fs hy wp)
o (19)
A= gl<f’ T ey ‘DO)

Similarly, if instead of prescribing the value of wy it is
desired to prescribe the angle of attack a, equation (16) is to be
replaced by the system

T = F(f, A., (Do)
' (20)

wp = &(f5 A, )

where ge(f, A, @) is obtained by solving equation (13),

2n
T 1
g (f, A, @) =a + %—- = 5= of £(w)] do-

0

The angle of attack (and hence also ) will be determined if the
value of f(w) is prescribed at some_fixed point w;, 0<w; <2rx. In
fact, expanding the terms cos2 U-)—%—%—m—o- in equation (15) by means of
the addition theorem, it is seen that the condition

flw) = oy (21)

is equivalent to & trigonometric equation for the angle wg. The ©

coefficients of this equation will depend upon the function f and
upon A (as well as upon a)l). Denote th_e solution of this trigono—

metric equation by

@ = &3(f, »» o1) - (22)

\
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If the angle of attack is determined by means of condition (21) the
equations to be solved take the form

f = F(f, As (l)o)
(23)

Although this wé.y of fixing the angle of attack seems rather artificial,
it turns out to be advantageous for numerical computations.

4, Solution of the Integral Equation

All four forms of the integral equation given in the preceding
section suggest the application of the method of successive approxi-
mation. To solve eguation (16) for instance, an initial function fp(w)

is selected, such that

-

fo'>0

v -

£5(0) ='0 (2k)

fo(ax) = 2n ]

The operator F(f s A wo) transforms this function into another func-—
tion :E’l((ﬂ) which also satisfies conditions (24). Now compute success—

ively the functions

f1 = F(fp)
fp = F(fl)
n+l F(fn)

Tf the sequence (fj) converges and F(fn)-> F(lim fn), then the
limit f = lim £, 1is a solution of eguation (16).
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It is easy to see how this procedure has to be modified for the
systems (19), (20), and (23). In the case of system (23), for instance,
an initial *function fo(w) satisfying conditions (24) is chosen, and

the function £;(w) and the values ‘wp(l) are computed so that

£y = F(fo, As wo(l)>

‘”o(l) = g3(f1’ A "1)

(25)

1

This .1s clearly possible, since the function fo determines a func—

tion h(w) according to equations (9) and (10). With this
function h(w) and the given values of i, 01> and ay, the value wo(l)

is determiped so that the condition

f1(®) = o1
be satisfied. Once the value of a)o(l) is found, the computation

of f,(w) can be completed. The function fl(a)) satisfies condi—
tions (24), so that the procedure may be continued. The function T (w)
and ‘the numbers ) ) are computed by the scheme:

_ (n))
o= F(fn—l’ Ay @

The procedure yields the solution of system (23) provided that‘it con—
verges, that is, provided that the limits

f(w) = plil)nwfn(w)

: ()
= 1
wy 0 im o

exist.

The systeﬁs (19) and (20) may be treated in a similar way.
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Attempts to settle the convergence question theoretically have
failed thus far. On the basis of numerical computations which were
carried out, the author believes the iteration method will in general
diverge when applied to the equation (16) and will converge for the case

of system (23), provided the value of oy is chosen in such a way that
the point of P corresponding to the value of o, is ‘close to the

point of maximum curvature of the profile. The convergence might be

due to the fact that all successive approximations satisfy condi—

tion (21). This opinion is substantiated by the fact that previous
computations (see reference 8) indicate that the iteration method can
be applied successfully to equation (16) provided the profile is symmet—
rical and the flow is circulation—free. In fact, for a symmetrical
profile the condition wg = 0 is equivalent to a condition of the form

of equation (21) with w; = 0p = =.

The computation of the successive approximations is & routine
matter involving only numerical integration. Note that the integral in
equation (10) is a proper Riemann integral, the value of the integral
at t = 0 being defined as

t]_.i_z)no{[j\.(w + 1) — Ao — t)] cot g }

I

bt (o)

Werfs@]e @) - 5B (26)

The rapidity of the convergence will depend upon the choice of the
approximation of order O, fo(a)). In general there should be no diffi-
culty in finding a good initial approximation. The remarks concerning
this made in reference 8, section 6, apply to the present case with
obvious modification. )

5. Ebca.u;ple

As an example, the velocity distribution of a circulatory flow past
a symmetrical Joukowski profile has been computed. The stream Mach
number was chosen to be M, = 0.685. Since the stream Mach number is
connected with the parameter A by the relation

M2

G

(a7)

A

e A s — = FE e
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the value of -\ is 0.157. The thickness of the profile is determined
by setting the usual thickness parameter € equal +to O. 15. (The
significance of € is seen from fig. 3. ) The angle of attack was
determined by choosing the values

(Dl=‘1f

Y 3.1222

The computation yielded the values
= 3% 2
a = 20 27

The functions ©(¢) and @'(g) for a Joukowski profile were
computed by Saltzer (reference 11). The numerical values of these
functions for a symmetrical profile with € = 0.15 are given in
reference 8. The solutlon of the integral equation
for A\ = 0.157, @y = 0° was chosen as fo(w). The values of the

successive approximations fn(a)) s O n) are given in table 1. The
functions £ (w) were computed for ® = 0%, 10°, . . . , 360°. The
difference between fg and ‘.f'9 may be considered as negligible within
the limits of accuracy of the computations. The resulting velocity
distribution is given in table 2 and plotted in figure 3. The points

on the profile are characterized by means of the amplitudes & of the
points of the circle into which they -are taken by the standard conformal

mapping.

The resulting velocity distribution may be compasred with that of
an incompressible flow (M°° = O) for the same angle of attack, and

with that obtained by means of the Kérmdn—Tsien velocity—correction
formula
1-2 ’
(2)-(2) _ (26)
e c oo 1132
9.4

where the subscripts ¢ and 1 denote compressible and incompressible
flow, respectively.
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Remark.— During the present investigation, it has come to the
author's attention that, in a previous work on this subject (refer—
ence 8), there are two errors. In the formla (61) on page 24 (cf.
equation (28) of the present report) the exponent 2 is missing in’ the
denominator. In table IITb the values in the second column have been
computed incorrectly. The corrected valués are given in table 3 of the
present report.

- CONCLUDING REMARKS

The integral equation used for the numerical computation of
velocity distributions can also be used as a basis of existence
theorems for flows obeying the simplified density-—speed relation.
This, however, is a problem of pure mathematical interest. As stated
in ‘the INTRODUCTION, the extension of the present msthod 10 subsonic
flows obeying the adiabatic pressure—density relation hinges essen—
tially on problems of computational technique.

Syracuse University
Syracuse, N. Y., September 1, 1947

N
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APPENDIX

MATHEMATTCAL DERIVATION AND JUSTIFICATION OF PROCEDURE

1l. The Boundary—Value Problem

This appendix contains the derivation of the results announced in
sections 1-to 3 under ANALYSIS. According-to the definition of ths
quantities o, 5, 0, ® the equation of the profile P may bs written
in the form: .

o
e10(t) at, 0< o< 2 (A1)
0

The velocity potential @ is defined by the relations

u=aoé—£'
A2
. .
oy

where u and v are the components of the velocity vector. As stated
in the INTRODUCTION, ¢ satisfies the minimal surface equation

V(3¢ g o ¢ (32 1P
l+<$> Q--—Ea—x—a-s-r-———ax ay+[l+<$>j,gyz—o (A3’)

It is required to find a soiution of equation (A3) defined in the
domain E(P) exterior to P and satisfying the conditions

8_¢_)&29, -a—¢—)0 as z —> «
ox %o oy
¢ . (Ak)
o¢ '
gr—l- =0 on P
J
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(n denoting the direction normal to P) as well as the Kutta—Joukowski

condition
2 2
) (%g-) + (%g < o gt Zq

In general (¢ will not be one-valued. The circulation of the Flow is
given by .

I'=f(udx+vdy)=aofd¢ ‘ (45)

the integration being performed along any simple closed curve
containing P in its interior. It.is assumed that there exisis exactly
one stagnation point different from zg, z; = Z(crL).

Set
. —ig
w=u-—1iv = ge _ (46)

The function @ (slope of the velocity vector) satisfies ths conditions

60 as z— o (AT)

® — o — n on the upper bank of P .
6 = (A8)
® — a — 2x on the lower bank of P

Here the upper or lower bank of P denotes the arc of P corresponding
to the parameter velues 0< o< o Or o, < o< 2x, respectively.

The stream function  of the flow is defined by the relations

-

ou _ 3
Po20 Fy
r | (49)
v oY :
poao ax

where p is given by equation (2). Since V¥ is constant aloag any
streamline, it may be assumed that ¥ = 0 on P.

.
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The "distorted complex velocity" is given by

—ig

w¥ = q*e (.AlO)
where g% is the "distorted speed"
q 1

8.0 ]
1 +\/1 $ 21
8o

Note that the paramster A defined by equation (8) satisfies

A= (a%)2 | (A12)

vhere q¥*_  is the value of é* for the undisturbed flow, and that
equation (All) is equivalent to equation (11).

It has been shown (see, for instance, reference 5) that the complex
potential

G=¢+ iV " (A13)

is an analytic function of the complex variable w¥*.

2. Mapping of the Profile onto a Circle

In this section the existence and uniqueness of the mapping of the
domain E(P) ‘described in section 1 under ANALYSIS will be establishsd.
This transformation : ’

uve
1

E(X,y)
(ALk)

1 = 1(x,y)

must satisfy the following conditions:

(1) The transformation (Al4) maps E(P) in a one—to-one way onto
the domain |{| >R, where R is an appropriately chosen positive
constant and € = ¢ + in. The profile P is taken into the

circle £ =Rel®, 0< o < 2x.

e e e ———— A A S e et s - . F e e e e o e i
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(2) The transformation (Alk) takes the point z = w into { =
and, as zZ-> w,

) ag é’ﬂ n
g;-)l ax—->0
> (a15) .
ot on
— >0 —_=>c> 0
oy dy ]

(3) In the t{—plane the complex variables G and w* are analytic
functions of €. :

Let ds be a line element in the z—plane, ds = (dx,dy). Let aS
denote the length of a line element on the minimal surface ¢ = @(x,y)
whose proJjection is ds.

Then
a8° = dfF + ax® + ay°
_ 1 2 2
=— (udx + v dy)< + ds
a2
(0
or
as? = dx® + 2gyo dx 4 dy2
811 + <812 Y + 8o dy
where
g1 =1+ (q/ao>2 cos2g -
g1 = (‘1/30)2 cos @ sin @
8o =1+ (q/a.o>2 cos2o

By virtue of classical theorems it is possible to map the domain E(P)
in a one—to—one way onto the domain exterior to a circle in the {—plane,
the mapping being conformal with respect to the Riemannian metric dS.
It has been shown (reference 5) that any such mapping satisfies condi-—
tion (3). By a linear transformation of the {—plane it can be achieved
that the mapping sa.tls:f'y condition (2). The constant R 1s then
uniquely determlned. .
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According to the definition of the function f£*(w), eg_uation (&)
takes the point z = Z[f*(w)] into t = Rel®,

3. The Complex Potential in the g—pla.ne

In the ¢—plane G = ¢ + iy is an analytic function for [¢] > R.
The harmonic function V¥ 1is one—valued, and V¥ = 0 for |[¢] =R. The
harmonic function ¢ increases by . T /ao as { goes once around the
circle |§| =R (in the counterclockwise direction). Furthermore, by
conditions (A4) and (A15),

i G (=) = % (416)

It follows that G has the form (except perhaps for a nonessential
additive constant)

q R® r ¢
G = = + =)+ log = Al
(€) a, < € > ag2wi & R (A17)
so that .
- i
e aq, Re 0 Re O
— =21~ 1+
¢ &g g £
where
w, = — sinF —& (418)
Y 4sRq g

The boundary value of fhe velocity potential is given by

8&(&)] = 2Rq°°/ao<cos W — » sin (Do)
so that
____d¢[f*(w)] =R e 5, O DD O~ % (A19)

dw 8‘0 2 .2
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Note that the line V¥ = 0 in the {—plane meets the -

. ’ —iwp iwg
circle |¢{| =R at t =Re and at ¢ = —Re” “, whsreas the
line V¥ = 0 in the z—plane meets the profile P at zp and z7. It
follows that .

£*(-wp) =0
(A20)
f‘*(:t + a)o) = oy,
as was asserted in section 1 under ANALYSIS.
Ll

L. The Velocity in the {-Plane

The distorted velocity w* is analytic in the {—plane.
Since ¢ #0 in E(P), w*(¢) #0 for |t|> R, so that

log w* = log g* — i6

is a regular analytic function in |} > R. By virtue of equations (A8)
and (A18) the boundary values of the harmonic function 6 are as
follows: .

@[f*(a))] - —-a, Wy <O I(.-l- wg
8[e*(w)] = (421) -

@[f*(a))] —21 —a, T+ 0y < ©0< 20 — Wy

Thus, if f* 1is assumed known, 6 may be computed in the whole
domain IH >R (say, by Poisson's integral formula), and so

can log g* and therefore g. For ¢ = « the mean—value theorem for
harmonic functions yields . :

[’QK—CDO
-1

T

d
g== g

e[r*(w)] aw — a.—%t- + wp
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Recalling the definition of f(w) (cf. equation (6)), this may be
written ‘ ) .

2n
1 " 3xm

o = 5= @[f(m)]dm—a.——§-+wo

C:oo 0
But, by condition (AT),

' of =o
(=

Formula (13) for the angle of attack follows from these two relations.

" It is seen from equations (A21) and (3) that '5[f*(a))] experiences
Jumps of magnitude P and =x at w=-wy and ® =1x + Wy,

respectively. This implies that ¢* vanishes at { = Re %0

— ko iy i
as |t — Re imol - and at ¢ =—Re:L 0 as l§+Re wol Hence
- 148
% (¢) = : (422)
B
—iwg) ™ g\ T
¢t — Re € + Re
is regular for |¢| >R, continuous for |{| >R, ana everywhere
different from O or «. It follows that log X({) is regular
for |{| >R and continuous for [f{| 2R. Set
log ‘X(Relm> = Alw) + iB(w) ' (A23)

A classichl theorem “(see, for instance, reference 12, p. 243) yields
the relation

el
Alw) = —é]-;-t- [B(a))+ t) —Blw — t)] cot -22 + log lX(oo)' (A2Y4)
0

Clearly (since q*ma = x)
X(w) =yX : (425)

T T e e e i e et et b e o e et s i e e ot e
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It follows from equation (A22) that

As) = o a*[ £*(0)]

B
l+1_[. T

2

sin

o + Wy
2

Also

| B(w) =8 [t*(w)] + (l + %)w —«% arg (ei“’ - e_imo) — arg <ei‘” + ei‘”o) (427)

Since 5'33*(0))] is given by equation (A21) .

B(w) = —A*(w) + Constant

where

A*¥(w) =8 f*(a))] - 62: %

A*(w + 21) = A¥(0)

From equations (A26), (428), and (A24), it follows that

?i*[f*(a))] =Vx 21-'% sin il 8 cos 2= % eh*(a))
where
b 18
h*(w) = 21—ﬂ [A%(@ + ) —A%(w — t)] cot Z?- at
0

Formuila (A30) ©s clearly equivalent to equation (12).

5. The Mepping Function

(428)

(429)

(430)

(431)

The knowledge of the function f(w) implies the knowledge of.the

mapping from tke domain |{| >R to the z—plane. In fact, using

equations (2), (A2), and (A9), it is seen that
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_d¢=595(dxcose+dysin6)

dxy=—q—/£%(—dxsine+d,yqos 8)

q’
V' o

so that ’
A 4 + 1 av
dz =dx + 1 dy = i eie[-—;d——-— q*(d¢ -1 d\lf)]
N 2 q*
or
1€ o 2
dz 2<w* W . (A32)

where a bar denotes the conjugate complex quantity. This well-known
relation is due to Chaplygin (reference 1). In the t —plane it becomes

dz =%[-G'—(§—i-£§-—(}'(§)v* di:,

and since 2z = zp corresponds to £ = Re %0 = Cos
C G'( e) dgi 1 g
z = zp + % —V?*%C_'y_ T2 Gr(Er )wx(gr)ate (A33)
%o to '

1

BE)th integrals are path—independent > the integrands being analytic
functions. '

In particular, if |¢| =R the integration can be performed along
an arc of the circle [{| = R. Then
it = iRe"® aw .
18 £x(w)]

Wk = % [f*(a))]e

T e e e o S et e e e e S e e e - e e e



26 NACA TN 2056

where g* is givén by equation (A30) and % by equation (A21). Also,

by equation (A19), since ¥ =0 on l¢] =R,
. —iw X
o = _ 1 ag [£*(w)]
R dw
Y ‘ ® + Wy w—-o
= ke (g_/ap) sin —5 cos —5 0

Tf these values are introduced into the right-~hand side of equation (A33)
and it is noted that for § = Re'®, z = Zl_f*(a))] , the following relation

is. obtained:

B
2 "R(a_/a0) _; io|f*(w*)
Z[f*(w)] = ZT +__-(_\/;/_i)- e 1 L*(a)')e [ ] am? (A3)-l-)
%o
where
1"E 2B 2B
o+ | —_h* 2+ == W + Wyl = w —
L*(w) = jisin 5 (Do [e = (w) - xa n sin 0 b 0052 ——2——99' eh*(w)}
. (A35)
Differentiation of equation (A35) with respect to w, together with
equation (Al), yields the relation
B .
S 2 ™R
S f1(o) = —i———;:;/ 20) 1x(w) (436)
A
Integration of this equation from ® = to” w = 2:r'-— wg, teking
into account equations (5), leads to,
Jr 8
R = : (A37)
_B 2r—p
2 ™(gae/20) L*(oo?) doof

%o
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If this expression is introduced into equation (A18), it follows that

o+ B
2 "% S sin )

0 2r—wy)
L*¥(w) dw

r =-a

(A38)
)

Tt is easy to verify that this is equivalent to equation (1k).

6. The Integral Equation

If R in equation (A36) is replaced by its value from equation (A37)
and the resulting equation is integrated from -0y, to a variable upper
limit w, it is seen that

[§M}
L¥(wt) do'’

: -
*(w) = 2x 0

(439)
2—wg

L*(w') do?
0

Since L* is given by equations (A29), (A31), and (A35), this is an
integral equation for the function f£*(w). Furthermore,
since f(w) = £*(w — wp), equation (A39) is identical with equation (15).

It remains to be shown that the solution of the integral eguation
is equivalent to the solution of the original boundary—value problem.
To verify this, assume that an increasing function f*(w) satisfying
equation (A39) (for given values of ) and a,) is given. With this
function define G(f) by means of equations (A1T7), (A18), and (A37).
From the way the integral equation was set up, it follows that there
exists an analytic function w*({) regular for |§] > R and satis—
fying the equation

e—i5 [£* (o) ]

wr(8ei®) = e [r*()] ,w(e) =% (Ak0)

e -~ SRR, — ——— - e e e
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where q* is given by equation (A30) and 8 by equation (A21).. With
these functions, G and w¥, form the mapping function, equation (A33).
This function maps I Cl =R in a one—to—one way onto the profile P.

Hence
f dz =0

if the integration is performed along [{| = R. By Cauchy's theorem
the same is true for any simple closed curve in |{| > R. Hence
equation (A33) defines a one—valued transformation from the {—plane
to the z—plane. Next, ‘

o,y %, % _ 18 lg—.
Set et TSt 2w 29T .

B e e

ox oy oz oz _ i(i G, ;L_G_—,—-)
on . Oy ot oL 2

Thus as > =

dt 20 2\x
By.
8—5- 0
ox
-é-;-]'——}o
on @02 VA
By equétion (8) this is equivalent to
éizel ' -a-x;--—BvO
ot on
D 5o F 560
ot on

as t->w Tt follows that { = o is taken into z = @ Finally
the Jacobian of the transformation
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is equal %o

Since it was assumed that f£**(w)

g2 Axy) _ 3(z,7)
3(e.n)  (L,D)

= L@ 1 2
J—MIG(§)|2<Iw*|2 ,w*|_>

that L*(w) > 0, so that by equations (A30) and (435)

the maximim modulus principle, and by equation
that |[w¥] <1 for

|¢] > R, so that

Jd>0 for l§l>R

29

(Ak1)

2 0, it follows from equatidn (A39)
|a*| <1. By
(AkO), this implies

The preceding statements contain the result that equation (A33)

glves a one—to—one mapping of
« into
may be considered as functions of x and

into P and ¢

domain E(P).

where

Hence

Z = o,

g =Re G(¢) -
X = Re H(L)
¥y = Re K(¢)

-

H=%fc;t(wi*-w*)dg,

Ké—%fct(wi*+w*> at

& - -

[8] >R onto 'E(P), taking |t| =R
Therefore the functions

Y, defined in the
Now, by equations (A33) and (Al3),

and w¥

(a42)

(A43)

(A4L)
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By use of a classical theorem by Weierstrass, it may be concluded from
this relation that in the z—plane § satisfies the minimal surface
equation (i.e., is the velocity potential of a compressible flow).
Next,

u-—1iv (Bx lay 28g, S
oo 2, ) |
2ao<a§ LA (ak5)

Using equation (A33) and the expression (Ak1l) for the Jacobian, it is
easily seen that )

~ -

o 2 wx
dz  1-— |wx|¥ar
L (Ak6)
3T _ 2 RO
3z 1-|w* @
] .
On the other hand,
-
F_ 1
ot 2
> o (AT
F_1g
ot "2 |
so that by equations (A%5) to (AMT)
AT

Comparing the last expression with equations (Al10) and (All), it is
seen that w* is the "distorted velocity" of the compressible flow
generated by @.. Now equation (A4O) shows that @ satisfies the
required conditions on the profile P and at infinity.
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TABLE 1.-- SUCCESSIVE APPROXIMATIONS TO THE FUNCTION f£(w)

[Joutcowskt profile, € = 0.15, My,= 0.685, A = 0.157, @) = x, o) = 3.122]

) (o) -
(deg)|radiens)| £o(w)| £1(w)| £o(w) .f3(a>) (o) | I5(0) | £g(w) t7(0)| £g(w)| fg(w)

o | 0.000 | 0.000{ 0.000| 0.000{ 0.0001 0.000] 0.000| 0.000| 0.000| 0.000{ 0.000
10 175 .032! .031| .o03%| .032| .032] .033} .032| .032{ .032| .032
20 .349 L1281 .126] .13%| .128} .127| .1i29{ .127| .127| .127| .1o7
30 524 279 .ot .293) .219) .279) .281) .279| .279| .279| .279
ko .698 L76) JaTh| W501| JATT| WBTTY O GBT9| GWTT| WUWTT] GUWTT LBTT

50 | .873 .708| .706| .745| .708| .T10{ .711| .710} .T1O| .T10f .T10
60 | 1.047 | .962| .g960| 1.011| .960} .965| .965| .965| .965| .965| .965
70 | 1.222 |1.227} 1.225| 1.287{ 1.221} 1.232} 1.230( 1.231| 1.231] 1.231| 1.231
80 | 1.396 |1.k93| 1.491]| 1.562| 1.482) 1.499| 1.495| 1.498] 1.497| 1.497] 1.k9T
90 | 1.571 | 2.751| 1.749| 1.826] 1.734| 1.758| 1.751| 1.756| 1.754| 1.755( 1.755

100 | 1.745 | 1.994| 1.992} 2.072| 1.971] 2.010{ 1.991| 1.999| 1.996| 1.99T| 1.997
110 | 1.920 |2.218] 2.216] 2.295| 2.189| 2.242| 2.211 | 2.223| 2.218] 2.220| 2.219
120 | 2.094 |2.420{ 2.418| 2.491| 2.385| 2.442| 2.408| 2,423 | 2.416| 2.419] 2.418
130 | 2.269 |2.597| 2.595| 2.658| 2.558| 2.618| 2.580| 2.599 | 2.590] 2.594| 2.592
ko | 2.4k | 2.750] 2.743) 2.797| 2.707] 2.768| 2.727| 2. 749} 2.738| 2.744| 2.741

150 | 2.618 |2.878| 2.867| 2.910| 2.8357] 2.890| 2.851 | 2.87k | 2.862| 2.869| 2.865
160 | 2.793 |2.983} 2.968| 2.997] 2.945} 2.987| 2.955| 2.976| 2.96k4| 2.971| 2.967
170 | 2.967 | 3.069| 3.051| 3.06L4} 3.040} 3.061| 3.04%| 3.056§ 3.048| 3.053| 3.050
180 | 3.142 | 3.1k2}| 3.122| 3.122{ 3.122| 3.122| 3.122| 3.122| 3.122] 3.122| 3,122
190 | 3.316 |3.215] 3.195| 3.191} 3.198| 3.191| 3.198]| 3.192| 3.196| 3.193| 3.195

200 | 3.491 | 3.300{ 3.282| 3.286| 3.278]| 3.280| 3.282] 3.278} 3.282| 3.279| 3.281
210 | 3.665 |3.405| 3.388] 3.409| 3.376| 3.392| 3.386| 3.387| 3.388| 3.387{ 3.387
220 | 3.840 | 3.534| 3.515| 3.560| 3.496| 3.527| 3.51%] 3.519| 3.517| 3.518] 3.518
230 | k.04 |3.686| 3.668| 3.737| 3.642| 3.685]| 3.668] 3.675| 3.672| 3.674| 3.673
240 | 4.189 |3.863| 3.849] 3.939| 3.819| 3.866| 3.848( 3.856| 3.852| 3.854] 3.853

250 | 4.363 |4.065| 4.055| 4.166| 4.023| 4.-070| ¥.052| 4.060| 4.056| 4.058| L4.057
260 | 4.538 |4.289| L.282| k.his| k.251] 4.295( 4.278| 4.286] 4.282| 4.285| 4.283
270 | 4.712 |%.532{ 4.528| 4.682| 4.500| 4.538| L.524| 4.531] 4.527] 4.530| 4.528
280 | 4.887 |k.790| 4.787| k.962| 4.765] 4.796| 4. 784 | k.790| 4.786] k.789| 4.787
290 | 5.062 |5.056| 5.055| 5.249| 5.039| 5.061| 5.052| 5.056| 5.053} 5.055| 5.05k

300 | 5.236 |5.321| 5.321| 5.533| 5.311{ 5.325| 5.318( 5.321] 5.319]| 5.321| 5.320
310 | 5.411 |5.575| 5.576| 5.669 5.571| 5.578] 5.574| 5.576| 5.574| 5.576| 5.575
320 | 5.585 |5.807| 5.808| 5.779| 5.805| 5.809| 5.806| 5.807| 5.807| 5.808{ 5.807
330 | 5.760 {6.005| 6.006| 5.989| 6.003| 6.006| 6.00k| 6.005| 6.004| 6.005{ 6.005
340 | 6.93% |6.156{ 6.158| 6.149| 6.156| 6.157| 6.156 | 6.156| 6.156| 6.156] 6.156

350 | 6.109 |6.251} 6.252| 6.249| 6.251| 6.251 6.25i 6.251| 6.251| 6.251} 6.251
360 | 6.283 |6.283| 6.283| 6.283| 6.283| 6.283| 6.283| 6.283| 6.283| 6.283| 6.283

I R 0° 30 |5° 521 [1° 37* |u° k7t [2° ket |3° s2v [3° 177 |3° 377 (3° 27"
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TABIE 2.— VELOCITY DISTRIBUTION

[Joukowskt profile, € = 0.15, Mg = 0.685, A = 0.157, @) = x, oy = 3.122]

a/a, By present For incompressible By Kérman-—Tsien
® method fluid o method
0 0.884 0.869 0.831
10 .849 876 L840
20 .856 .893 ' .860
30 .888 .919 .893
Lo .932 .952 .935
50 .98k -993 -990
60 T 1,047 1.0%0 1.056
70 1.121 1.092 1.132
80 1.20k4 1.148 1.220
" 90 1.295 1.205 ; 1.316
100 1.392 1.263 1.421
110 1.492 1.319 1.529
120 1.589 1.372 1.641
130 1.672 ) 1.415 1.739
140 1.715 1.445 1.812
150 1.675 1.5 1.812
160 - 1.464 1.373 1.644
170 .994 1.098 1.141
180 . 457 .070 .059
190 -299 : <377 .325
200 . 760 .837 . 793
210 1.034 1.047 1.066
220 1.180 1.141 1.209
230 1.24) 1.177 1.268
240 1.255. 1.182 1.277
250 1.235 1.167 1.251
260 1.194 1.141 1.208
270 1.143 1.106 1.155
280 1.088 1.068 1.097
290 1.033 . 1.028 1.039
300 .981 .990 .986
310 <935 . 954 .938
320 .895 .923 .898
330 .863 .898 .866
340 .839 .880 .84k
350 .839 .870 .832
360 .884 .869 .831
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Figure 1.~ Relationships in z-plane,

Figure 2,- Relationships in -plane,
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